Coloring graphs by translates in the circle
نویسندگان
چکیده
The fractional and circular chromatic numbers are the two most studied non-integral refinements of number a graph. Starting from definition coloring base graph, which originated in work related to ergodic theory, we formalize notion gyrocoloring graph: vertices colored by translates single Borel set circle group, neighboring receive disjoint translates. corresponding gyrochromatic graph always lies between number. We investigate basic properties gyrocolorings. In particular, construct examples graphs whose is strictly also establish several equivalent definitions number, including version involving all finite abelian groups.
منابع مشابه
Covering and coloring polygon-circle graphs
Polygon-circle graphs are intersection graphs of polygons inscribed in a circle. This class of graphs includes circle graphs (intersection graphs of chords of a circle), circular arc graphs (intersection graphs of arcs on a circle), chordal graphs and outerplanar graphs. We investigate binding functions for chromatic number and clique covering number of polygon-circle graphs in terms of their c...
متن کاملColoring Clean and K4-free Circle Graphs
A circle graph is the intersection graph of chords drawn in a circle. The best known general upper bound on the chromatic number of circle graphs with clique number k is 50 · 2. We prove a stronger bound of 2k − 1 for graphs in a simpler subclass of circle graphs, so called clean graphs. Based on this result we prove that the chromatic number of every circle graph with clique number at most 3 i...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملContainer ship stowage problem: complexity and connection to the coloring of circle graphs
This paper deals with a stowage plan for containers in a container ship. Since the approach to the containers on board the ship is only from above, it is often the case that containers have to be shifted. Shifting is de ned as the temporary removal from and placement back of containers onto a stack of containers. Our aim is to nd a stowage plan that minimizes the shifting cost. We show that the...
متن کاملColoring translates and homothets of a convex body
We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2021
ISSN: ['1095-9971', '0195-6698']
DOI: https://doi.org/10.1016/j.ejc.2021.103346